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Abstract Structural induction is a technique for prov- 
ing that a system consisting of many identical components 
works correctly regardless of the actual number of compo- 
nents it has. Previously the authors have obtained con- 
ditions under which structural induction goes through for 
rings that are modeled as a Petri net satisfying a fairness 
requirement. The conditions guarantee that for some k, 
all rings of size k or greater exhibit "similar" behavior. 
The key concept is the similarity between rings, where 
rings Rk and Rl of sizes k and i, respectively, are said 
to be similar if, intuitively, (1) none of the components in 
either ring can tell whether it is in Rk or RL, and (2) none 
of the components (except possibly one) can tell its posi- 
tion within the ring to which it belongs. A ring satisfying 
this second property is said to be uniform. In this pa- 
per we prove the undecidability of various basic questions 
regarding similarity and uniformity. Some of the ques- 
tions shown to be undecidable are: (1) Is there k such 
that Rk and Rk+1 are similar? (2) Is there k such that 
all rings of size k or greater are mutually similar? (3) Is 
there k such that Rk is uniform? (4) Is there k such that 
Rk, Rk+1, Rk+2,... are all uniform? 

1     Introduction 

Given a system consisting of many identical finite state 
components that are connected in some regular topology, 
how can we determine whether it works correctly regard- 
less of the actual number of components it has? Conven- 
tional theorem provers based on state-space search cannot 
be used directly to answer this question, since infinitely 
many instances of the system are involved. In fact, this 
problem is known to be unsolvable in general, even if the 
topology of the system is a unidirectional ring [1] [10]. 
The works reported in [2] [3] [5] [6] [7] [13] are some of the 
efforts to find a sufficient condition for such a system to 
be correct regardless of the number of components. 
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Inspired by [5] [13], the authors have considered the 
analysis problem stated above for rings of identical corn 
ponents given as a Petri net satisfying a fairness require 
ment, and obtained structural induction theorems that 
can be used to formally infer the correctness of a ring of 
any large size from the correctness of a ring having only a 
few components [6] [7]. Petri nets (see, for example, [9]) 
are widely used for modeling and analysis of concurrent 
processing systems. Fairness is an important property of 
concurrent systems often studied in the context of tempo- 
ral logic [8]. The combination of Petri nets and temporal 
logic has been found to be extremely useful for formal 
analysis of such systems [4] [11] [12]. 

One of the key concepts in the authors' induction the- 
orems is the "similarity" between two rings. For k > 
2, let Rk be the ring consisting of k identical copies 
Co, Ci,..., Ck-i of a component C. We assume that all 
components except possibly Co have the same initial state. 
Intuitively, we say that rings Rk and Rl are similar if (1) 
none of the components in either ring can tell whether 
it is in Rk or Rl, and (2) none of the components (ex- 
cept possibly Co) can tell its position within the ring to 
which it belongs. (A ring satisfying this second property 
is said to be uniform.) The induction theorems reported 
in [6] [7] provide sufficient conditions for all rings of size k 
or greater to be mutually similar for some k. Note that 
if Rk is correct in some sense and all rings of size k or 
greater are mutually similar, then we can conclude that 
Rl is correct for all I > k. The theorems have been applied 
to the formal analysis of token-passing mutual exclusion. 
a simple producer-consumers system, and demand-driven 

token-circulation. 
The goal of this paper is to prove the undecidability 

of the following basic questions regarding similarity and 
uniformity (as well as "weak similarity" defined later): 

1. Is there k such that Rk and Rk+1 are similar? 

2. Is there k such that all rings of size k or greater are 
mutually similar? 

3. Is there k > 3 such that Rk is uniform? 

4. Are R3, ß4,... all uniform? 

DTIf QUALITY INSPECTED 8 



5. Is there k > 3 such that Rk, Rk+1, Rk+2,... are all 

uniform? 

These negative results might seem somewhat expected in 
view of the results in [1] [10] and the undecidability re- 
sults reported in [13] regarding the existence of "network 
invariants" that are needed for carrying out induction. 
However, similarity and uniformity of rings are stronger 
requirements than the existence of network invariants, 
and hence the proofs of the undecidability results reported 
here require certain unique arguments. 

As is noted in [13] for the invariant method, despite 
these negative results we still expect that for many inter- 
esting, practical ring systems, the induction theorems of 
[6] [7] can be an effective tool for formal analysis. 

The rest of the paper is organized as follows. Section 2 
reviews the basic terminology of Petri nets. Section 3 
introduces the basic concepts regarding components and 
rings. In Section 4 we introduce similarity and related 
concepts. The undecidability results are presented in Sec- 
tion 5. The concluding remarks are found in Section 6. 

2     Petri Nets 

We review the standard terminology of Petri nets [9]. 

A Petri net is a directed graph with two types of nodes, 
called transitions and places, and weighted arcs from a 
node of one type to a node of the other type. Formally, it 
is given as a triple N = {P,T, F), where P is a finite set 
of places, T is a finite set of transitions, and F : (P x T) U 
(TxP) -» {0,1,2,...} is a weight function. A place p G P 
is called an input place (or output place) of a transition 
t G T if F(p,t) > 1 (or F(t,p) > 1). Any function M : 
p _► {0,1,2,...} is called a marking. A place p is said to 
have M(p) tokens at a marking M. A transition t G T is 
said to be firable at M iff M(p) > F(p, t) for every p G P. 
If t is Arable at M, then it may fire and yield another 
marking M' such that M'(p) = M(p) - F(p,t) + F{t,p) 
for every p G P. We denote this by M —►, M'. This 
relation is extended by 

1. M M and 

2. M -*ai M' iff there exists M" such that M -►« M" 

and M" -►« M' 

for all M, M', a G T* and t G T.1 If M -»« M' then M' 
is said to be reachable from M by a finite firing sequence 
a. L(N, M) denotes the set of all finite firing sequences 
from M. An infinite sequence a G Tw is an infinite firing 
sequence from M if ß G L(N, M) for every finite prefix ß 

1T* and T" denote, respectively, the set of finite sequences and 
the set of infinite sequences of the elements of T. A is the empty 
sequence. 

of a. We denote by LW(N, M) the set of infinite firing se- 

quences from M. Let L~(W, M) = L{N, M) U LU(N, M) 
denote the set of all (both finite and infinite) firing se- 
quences from M. Usually an initial marking is associated 

with a Petri net. 
We draw a Petri net using a circle and a square to 

represent places and transitions, respectively. An arc with 
weight F(p,t) (or F{t,p)) is drawn from p to t (or from t 
to p) if F(p, t) > 1 (or F(t,p) > 1). The weight is omitted 
if it is 1. A marking M is represented by drawing M(p) 
dots in (the circle representing) p. 

When describing a system using a Petri net N = 
(P, T, F), we may designate a subset V C T of transitions 
such that every transition t G V must be fired fairly, i.e., 
if t becomes firable infinitely often, then it must fire in- 
finitely often. Furthermore, to examine whether net N 
with initial marking M has certain liveness or eventuality- 
properties (e.g., "if ti fires then eventually i2 fires"), we 
may only be interested in those firing sequences a that are 
either infinite, or finite and terminating in the sense that 
there is no transition t such that at G L(N,M). This 
observation leads us to use the set C(N, M, T') defined 
below to examine the behavior of N: C(N,M,T') is the 
set of all firing sequences a G Lco(N, M) such that either 

1. a is infinite and satisfies the fairness requirement on 

the transitions in T", or 

2. a is finite and terminating. 

3    Components and Rings 

To save space, we introduce the necessary concepts infor- 
mally, using examples. The reader is referred to [6] [7] for 
a formal discussion. 

A component is a Petri net C = (P, T, F) in which the 
set T of transitions can be partitioned into three groups, 
the left interface transitions, the internal transitions and 
the right interface transitions, where the number of left 
interface transitions must equal the number of right in- 
terface transitions. See Figure 1(a) for an example of a 
component having two left interface transitions u\ and 
«2, three internal transitions Vi, v2 and v3, and two right 
interface transitions wi and w2- We connect two or more | 
copies of C to form a ring, as shown in Figure 1(b), by \ 
merging the respective interface transitions of adjacent v 
copies of C. For any k > 2, the ring consisting of k copies 
of C is denoted Rk, and the copies of C in Rk are referred 
to as Co, Ci, ..., Cfc-i, where Ci+1 is the right neighbor 
of C{. (Subscripts are taken modulo k when we discuss 
Rk). Formally, the transitions and places of C must be re- 
named in each d (e.g., v2 of C\ might be renamed •ivli2

y 

in the example given above) so that they all have distinct 
names in Rk.   However, for convenience, in Figure 1(b) 
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(a) (b) 

Figure 1: (a) Component C. (b) Ring R3 consisting of three copies of C. 

we use their original names in each copy of C, and thus 
assign two names to every interface transition. 

We assume that for all k > 2, the initial marking Mk 

of Rk is such that for some fixed markings M and M' of 
C, Co has M and all other C,-'s, i > 1, have M'. (It is 
often necessary to break symmetry by giving Co an ini- 
tial marking different from that of the other components.) 
Furthermore, we assume that for all k > 2, fairness (when 
required) should be imposed on an identical set of transi- 

tions in all components of Rk. 
In the following, sets L°°(Rk,Mk) and C(Rk,Mk,Tk) 

are simply written as Lco(k) and C(k), respectively, where 
Tk the set of transitions of Rk (consisting of identical 
selections from all components) on which fairness is re- 

quired. 
Let a G L°°(k) be a firing sequence of Rk. Let d be 

a component in Rk. We define the local history of C* in 
a, denoted ((d))a, to be the sequence obtained from a 
by deleting all transitions except those that belong to C,-. 
Here, a transition t belongs to d iff t is either a left inter- 
face transition, a right interface transition, or an internal 
transition of C,-. (So, an interface transition between C,- 
and C,+i belongs to both d and C,+i.) Sequence {{d))a 

is thus the portion of a that occurs in d. 
As we mentioned above, formally in Rk the transitions 

(and places) are renamed so that all transitions have dis- 

tinct names. Therefore, to be able to compare local his- 
tories of different components (that may even belong to 
different rings Rk and Rl), when describing {{d}}a we 
use the original transition names given in C, rather than 
the names in Rk after the renaming (e.g., use "v2" instead 
of "111,2" when describing ((Ci))0). 

Example 1 Consider ring R3 shown in Figure 1(b). Sup- 
pose that in the initial marking, only Co has a token, 
in place pi, as shown in the figure. Consider the fir- 
ing sequence a that moves the token through C\ and 
C2 and back to Co, as indicated by the dashed arrow 
in Figure 1(b).    Then the local history of C\  in a is 

((C\)) = UiV\W\W2U2- Similarly, the reader can verify 

(ico))a = v1w1w2 and ((C2))a = Uiv1v2u2. O 

Let M be a marking of Rk. The firability of an interface 
transition t of d at M is determined by the token counts 
of the input places of t, and such places may belong to 
C_i, d or d+\. We define the firability vector of C, 
at M to be a column vector of token counts of all input 
places (in C-i, C; and C;+1) of all interface transitions of 
d. (The order in which the token counts of these places 
appear must be the same for all components.) 

Let a be a firing sequence of Rk. Note that during the 
execution of a, a firing of a transition in C,-_i, C, and 
C;+i may change the firability vector of C,-. To describe 
the changes in the firability vector of d in <*, we now 
define the extended local history of C, in a, denoted (C;)a, 
as follows: {d)a is obtained from ((d))a by inserting the 
firability vector of C,- at the corresponding positions each 
time it changes. Again, instead of a formal definition we 
give an example. 

Example 2 Consider firing sequence a discussed in the 
previous example. The reader can verify that the ex- 
tended local history (Ci)a of Ci in a is 

0 1 0 0 0 0 Ü u 
0 
0 

0 
0 «1 

0 
0 Vl 

0 
1 

W\ 
0 
0 

0 
0 

w2 
1 
0 

u2 
0 
0 

0 0 0 0 0 1 0 0 

where the vectors show, in the following order, the token 
counts of p2 °f Co (the input place of «i of Ci), P3 of C\ 
(the input place of u2 of Ci), p2 of C\ (the input place of 
w\ of Ci), and p3 of C2 (the input place of w2 of C\). □ 

Intuitively, ((d))a describes not only which transitions 
of d fire, but also how the "environment" of d changes in 
a in terms of the firability of its interface transitions. Of 
course, if ((d))a = ((d))ß for firing sequences a and ß. 
then d cannot distinguish a and ß. On the other hand. 
the information on the behavior of the "environment" of 
d is not included in local histories (C,)a and (d)ß- 



4    Similarity and Uniformity 

We now review the main concepts introduced in [6] [7] 
for stating the induction theorems. Recall that C(k) and 
£.(£) are the set of firing sequences of ring Rk and Rl, 
respectively, that we use to determine their correctness. 

Definition 1 [6] Two rings Rk and Rl are similar, de- 

noted Rk ~Rl, if 

1. {(G>» G £(*)} = {(Co» € C(t)} and 

2. {(C}> G £(*)} = {(£,•» G £(*)} for any 1 < 
i< k-l and 1 <j <t- 1. 

Definition 2 [7] Two rings Rk and fl* are weakly simi- 

lar, denoted Rk ~ Rl, if 

1- {((Co» J« G C(k)} = {((Co» Ja € C(t)} and 

2- {((G)» G £(*)} = {((Q)» G £(*)} for any 
1 < i< k- 1 and 1 <j <i- 1. 

Intuitively, if Rk ~ Ä*, then none of the copies of C 
knows which of Rk and Rl it is in, and none of the copies 
of C other than Co knows which copy of C it is. (Co might 
behave differently from others, since its initial marking 
may not be the same as that of others.) Weak similarity 
is identical to similarity, except that the firability vectors 
of components are not considered. By definition, Rk ~ Rl 

implies Rk ~ Rl. 
As is explained in [6] [7], one way to prove the correct- 

ness of Rn for all values of n > k for some k is to show 
that 

1. Rk ~ Rk+1 ~ Rk+2 ~ • • •, 

2. S C {((C0»Ja G C(k)} C S', where S and S' are 
sets of firing sequences of C describing the correctness 
requirements for Co, and 

3. S" C {((Q»Ja G £(*)} C S'" for any one j, 
1 < j < k - 1, where S" and S'" are sets of firing se- 
quences of C describing the correctness requirements 
for allC, i > 1. 

Then Co's in all Rk,Rk+l,... have identical properties 
and Co of Rk is correct. Thus Co is correct in all 
Rk, Rk+1,.... Similarly, all C.-'s, i > 1, in all fifc,Äl+1,... 
have identical properties and that particular Cj of Rk 

(mentioned above) is correct. So all these C,'s in all 
Rk,Rk+1,... are also correct. The main result in [6] is 
a sufficient condition for R2 ~ R3 ~ Ä4 ~ • • • (hence 

R2 ~ ß3 ~ Ä4 ~ ■ • ■) to hold, and [7] presents a suf- 

ficient condition for Rk ~ ßA+1 ~ Äi+2 ~ • • • to hold 
for the given k > 5.   (We do not review these sufficient 

conditions since doing so requires additional definitions. 
The interested reader is referred to [6][7].) The concept 
of "uniformity" introduced next is used to state the con- 

dition in [7]. 

Definition 3 [7] Rk, k > 3, is uniform if {((C,»0|a G 
C(k)} = {((Cj))Ja G £(*)} for any 1 < i,j < k- 1. 

Note that if Rk is uniform, then none of the components 
C\, C2, • • •, Ck-i can determine its position in the ring. 

Example 3 We can show that the "environment" looks 
identical to all C,-, i > 1, in any Rk, k > 3, constructed 
from C of Figure 1(a). On the other hand, R2 and R3 are 
slightly different. In R2, u>2 of C\ becomes Arable when 
C\ fires «2, since its left and right neighbors are both 
C0. This cannot happen in R?, since the left and right 
neighbors of C\ are different. If we ignore the firability 
vectors, of course, R2 and R3 become indistinguishable 
to C\.  Using an argument along this line, we can prove 
R? + R? ~ RA , R? ~ R3 ~ R4 ~ ■ ■ ; and that R* 
is uniform for all Ar > 3. o 

In [6] [7], the argument outlined above has been used 
to prove the correctness of rings for token-passing mu- 
tual exclusion, a simple producer-consumers system, and 
demand-driven token-circulation. 

5    Undecidability Results 

As we discussed in Section 4, similarity, weak similarity 
and uniformity can be a basis for proving that a ring sys- 
tem is correct regardless of its size. In this section we 
prove that the basic questions regarding these concepts 
posed in Section 1 are undecidable in general. 

Theorem 1 Given C, M and M', the following ■problems 
are undecidable in general, even if fairness is not required 

on any transition. 

1. Is there k such that Rk ~ Rk+1 ? 

2. Is there k such that Rk ~ Rk+1 ? 

3. Is there k such that Rk ~ Rk+1 ~ Rk+2 ? 

4. Is there k such that Rk ~ Rk+1 ~ Rk+2 ~ • • ■? 

Proof We first prove the second and fourth claims that 
do not involve the changes in the firability vectors of the 
components. The basic idea is to simulate the given Tur- 
ing machine A (that does not halt in two steps) on the 
semi-infinite blank tape for (up to) n steps using a uni- 
form ring Rn of size n, in such a way that (1) if A halts 



in n steps, then Rn ~ ßn+1 ~ Rn+2 ~ • ■ -, and (2) if A 

never halts, then Rk %■ Rl for all k ^ I. In the sense that 
we use Rn to simulate a Turing machine or a two-counter 
automaton for n steps, the proof is similar to those found 
in [10] and [14]. But here the proof is technically more 
involved, since weak similarity is a fairly strong condition. 

Given a Turing machine A, we construct a component 
C and markings M and M' of C such that Rn simulates 
the computation of A on the semi-infinite blank tape for 
(up to) n steps. We will first describe the components 
as a finite state machine, and then later explain how we 
can represent them by a Petri net. Number the tape cells 
0,1,... starting with the leftmost one. For each 0 < i < 
n-l, Ci maintains cell i. Initially, the cells are all blank, 
and Co has the tape head (i.e., the tape head is reading cell 
0). The component that has the tape head also remembers 
in its finite control the current state of A- To simulate a 
single step of A, the component, say d, that currently 
has the tape head (1) rewrites the symbol in cell i, (2) 
determines the next state q of A, and then (3) sends q to 
either C,_i or d+\ depending on whether the tape head 
is moved left or right. The neighbor of C,- that receives 
q knows that it now has the tape head and simulates the 

next step of A. 
To ensure that the simulation stops in n steps and we 

do not run out of space (Rn has exactly n tape cells), we 
use a flag COUNT (initially false) in each component and 
two special symbols called NEWSTEP and EXECUTE in 
the following manner. Intuitively, we set one COUNT in 
the ring to true before each step of simulation. Specifi- 
cally, suppose d wishes to simulate a step of A. If its 
own COUNT is still false, then it sets COUNT to true 
and sends EXECUTE to the right and waits for EXE- 
CUTE to arrive from the left. If its own COUNT is true, 
then it sends NEWSTEP to the right and waits for EXE- 
CUTE to arrive from the left. In either case, d simulates 
a step of A as described above when EXECUTE arrives. 
A component that does not have the tape head always 
passes EXECUTE to the right. A component that re- 
ceives NEWSTEP for the first time (in this case COUNT 
is still false) changes its COUNT to true and sends EXE- 
CUTE (instead of NEWSTEP) to the right. A component 
that receives NEWSTEP when its COUNT is true passes 
NEWSTEP to the right. 

The simulation ends when either (1) component C; that 
has the tape head simulates one step of A and finds that 
the next state is a halting state, or (2) Co receives either 
NEWSTEP or a state of A from the left. In the first 
case, A has halted within n steps, and d circulates a 
special symbol HALT once around the ring and halts. In 
the second case, A did not halt within n steps, and Co 
circulates a special symbol SUSPEND once around the 

ring and halts. In either case, the entire ring comes to a 
halt after the circulation of HALT or SUSPEND. 

Since each component has only a finite number of states, 
constructing C as a Petri net is straightforward. Trans- 
fers of various symbols (NEWSTEP, EXECUTE, HALT, 
SUSPEND and a state of .4) can be represented by dif- 
ferent interface transitions. The fact that initially Co has 
the tape head can be reflected in its initial marking M 
different from M' of other components. Fairness is not 
imposed on any transition. 

Now, we modify C slightly to make Rn uniform. That 
is, before the simulation starts, we give any component 
in Rn a chance to "act" as Co in the simulation. We 
achieve this by letting (the real) Co nondeterministically 
do one of the following: (1) start the simulation, (2) send 

a token to the left through a special interface transition, 
and (3) send a token to the right through another special 
interface transition. A component that receives a token 
through one of the special interface transitions can, non- 
deterministically, either start the simulation acting as Co 
(as described above) or simply pass the token to the neigh- 
bor on the opposite side. This modification guarantees 
that Rn is uniform. A side effect is that the simulation 
of A may never start, but, this only adds two (identical) 
sequences (one for each direction in which the token is 
passed forever) to the sets of local histories of all C,-'s, 
i > 1, and two sequences to the set of local histories of 
Co- So whether or not two components have identical sets 

of local histories is not affected. 

Suppose that A never halts. Then for any n, (the com- 
ponent acting as) Co of Rn receives EXECUTE exactly n 
times. Thus for any distinct k and £, the two conditions 
of Definition 2 do not hold, and hence Rk •/■ Rl. 

Suppose that A halts within n > 3 steps. Then for any 
k > n, in Rk, (the component acting as) Co and its n — 1 
right neighbors (call them Ci,.. -, Cn-\ for convenience) 
perform the actual simulation (the simulation itself does 
not depend on the value of k) and each of Cn,..., Ck-i 
simply pass EXECUTE n times. (In addition, all com- 
ponents pass HALT once.) This, together with the fact 
that all rings are uniform, implies that for any k,£ > n, 
the two conditions of Definition 2 are satisfied, and hence 
Rk ~ Rl. This completes the proof of the second and 
fourth claims. 

As for the first and third claims of the lemma, it is easy 
to see that component C described above can be con- 
structed in such a way that each interface transition t has 
exactly one input place, say p, and once p receives a token 
it loses the token only when t fires. Then given any fir- 
ing sequence a of Rk, the changes in the firability vectors 
during the execution of a can be determined completely. 
So the conditions of Definition 1 are satisfied iff those of 
Definition 2 are satisfied. Therefore the claims we made 
on the relation between the behavior of A and weak sim- 

ilarity among rings hold also for similarity among rings. 
This completes the proof of the first and third claims.   □ 



Now we discuss uniformity. 

Theorem 2 Given C, M and M', the following problems 
are undecidable in general, even if fairness is not required 

on any transition. 

1. Is there k > 3 such that Rk is uniform? 

2. Are R?,RA,... all uniform? 

3. Is there fc > 3 such that Rk, Rk+\ Rk+2,... are all 

uniform ? 

Proof We modify the construction given in the proof of 
Theorem 1. Note that the real C0 can transfer its role as 
the initiator of the simulation to other components, but 
even after the transfer, it can still "remember" that it is 
the real C0- So, when the real C0 receives SUSPEND, 
(in addition to passing it as before) we let it fire a spe- 
cial right interface transition. Then the local history of 
the real C\ (the right neighbor of Co) becomes different 
from those of any other component, since that interface 
transition never fires at other components. So if A never 
halts, then the special transition is always fired, and thus 
Rn is not uniform for any n. On the other hand, if A 
halts within n > 3 steps, then Rk is uniform for all k > n. 
This completes the proof of the first claim. To prove the 
second and third claims, all we need to do is to change 
the behavior of the real Co so that it fires that special 
right interface transition when it receives HALT, instead 
of SUSPEND. Then if A halts in n > 3 steps, then Rk is 
not uniform for any k > n. If on the other hand A never 
halts, then that special transition is never fired, and thus 
Rn is uniform for all n. This completes the proof of the 
second and third claims.   D 

6     Concluding Remarks 

Since any finite alphabet can be encoded as binary strings, 
the negative results presented above remains true even if a 
component has only four interface transitions on each side, 
two for sending symbols and two for receiving symbols. 
It would be interesting to investigate the decidability of 
analogous problems for the case when the components 
have exactly one interface transition on each side, and for 
some restricted classes of Petri nets. 
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